Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Sci Rep ; 14(1): 6958, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521856

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Assuntos
Proteínas do Citoesqueleto , Glaucoma de Ângulo Aberto , Glicoproteínas , Animais , Camundongos , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/terapia , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular/genética , Lentivirus/genética , Malha Trabecular/metabolismo
2.
Cells ; 12(20)2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887296

RESUMO

The glucocorticoid receptor (GR), including both alternative spliced isoforms (GRα and GRß), has been implicated in the development of primary open-angle glaucoma (POAG) and iatrogenic glucocorticoid-induced glaucoma (GIG). POAG is the most common form of glaucoma, which is the leading cause of irreversible vision loss and blindness in the world. Glucocorticoids (GCs) are commonly used therapeutically for ocular and numerous other diseases/conditions. One serious side effect of prolonged GC therapy is the development of iatrogenic secondary ocular hypertension (OHT) and OAG (i.e., GC-induced glaucoma (GIG)) that clinically and pathologically mimics POAG. GC-induced OHT is caused by pathogenic damage to the trabecular meshwork (TM), a tissue involved in regulating aqueous humor outflow and intraocular pressure. TM cells derived from POAG eyes (GTM cells) have a lower expression of GRß, a dominant negative regulator of GC activity, compared to TM cells from age-matched control eyes. Therefore, GTM cells have a greater pathogenic response to GCs. Almost all POAG patients develop GC-OHT when treated with GCs, in contrast to a GC responder rate of 40% in the normal population. An increased expression of GRß can block GC-induced pathogenic changes in TM cells and reverse GC-OHT in mice. The endogenous expression of GRß in the TM may relate to differences in the development of GC-OHT in the normal population. A number of studies have suggested increased levels of endogenous cortisol in POAG patients as well as differences in cortisol metabolism, suggesting that GCs may be involved in the development of POAG. Additional studies are warranted to better understand the molecular mechanisms involved in POAG and GIG in order to develop new disease-modifying therapies to better treat these two sight threatening forms of glaucoma. The purpose of this timely review is to highlight the pathological and clinical features of GC-OHT and GIG, mechanisms responsible for GC responsiveness, potential therapeutic options, as well as to compare the similar features of GIG with POAG.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Humanos , Camundongos , Animais , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/metabolismo , Glaucoma de Ângulo Aberto/induzido quimicamente , Glaucoma de Ângulo Aberto/patologia , Hidrocortisona , Glaucoma/metabolismo , Hipertensão Ocular/metabolismo , Doença Iatrogênica
3.
Methods Mol Biol ; 2708: 77-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558962

RESUMO

Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.


Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Animais , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Pressão Intraocular , Malha Trabecular/metabolismo , Humor Aquoso/metabolismo
4.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196579

RESUMO

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.

5.
Invest Ophthalmol Vis Sci ; 63(1): 16, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015027

RESUMO

Purpose: Extracellular matrix stiffening is characteristic of both aging and glaucoma, and acts as a promoter and perpetuator of pathological fibrotic remodeling. Here, we investigate the role of a mechanosensitive transcriptional coactivator, Yes-associated protein (YAP), a downstream effector of multiple signaling pathways, in lamina cribrosa (LC) cell activation to a profibrotic, glaucomatous state. Methods: LC cells isolated from glaucomatous human donor eyes (GLC; n = 3) were compared to LC cells from age-matched nonglaucomatous controls (NLC; n = 3) to determine differential YAP expression, protein levels, and proliferation rates. NLC cells were then cultured on soft (4 kPa), and stiff (100 kPa), collagen-1 coated polyacrylamide hydrogel substrates. Quantitative real-time RT-PCR, immunoblotting, and immunofluorescence microscopy were used to measure the expression, activity, and subcellular location of YAP and its downstream targets, respectively. Proliferation rates were examined in NLC and GLC cells by methyl thiazolyl tetrazolium salt assays, across a range of incrementally increased substrate stiffness. Endpoints were examined in the presence or absence of a YAP inhibitor, verteporfin (2 µM). Results: GLC cells show significantly (P < 0.05) increased YAP gene expression and total-YAP protein compared to NLC cells, with significantly increased proliferation. YAP regulation is mechanosensitive, because NLC cells cultured on pathomimetic, stiff substrates (100 kPa) show significantly upregulated YAP gene and protein expression, increased YAP phosphorylation at tyrosine 357, reduced YAP phosphorylation at serine 127, increased nuclear pooling, and increased transcriptional target, connective tissue growth factor. Accordingly, myofibroblastic markers, α-smooth muscle actin (α-SMA) and collagen type I, alpha 1 (Col1A1) are increased. Proliferation rates are elevated on 50 kPa substrates and tissue culture plastic. Verteporfin treatment significantly inhibits YAP-mediated cellular activation and proliferation despite a stiffened microenvironment. Conclusions: These data demonstrate how YAP plays a pivotal role in LC cells adopting a profibrotic and proliferative phenotype in response to the stiffened LC present in aging and glaucoma. YAP provides an attractive and novel therapeutic target, and its inhibition via verteporfin warrants further clinical investigation.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Mecanotransdução Celular/fisiologia , Disco Óptico/metabolismo , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas de Sinalização YAP/genética , Western Blotting , Células Cultivadas , Glaucoma/metabolismo , Glaucoma/patologia , Humanos , Disco Óptico/patologia , Proteínas Proto-Oncogênicas c-yes/biossíntese , RNA/genética , Proteínas de Sinalização YAP/biossíntese
6.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201109

RESUMO

Glaucoma is a group of optic neuropathies that leads to irreversible vision loss. The optic nerve head (ONH) is the site of initial optic nerve damage in glaucoma. ONH-derived lamina cribrosa (LC) cells synthesize extracellular matrix (ECM) proteins; however, these cells are adversely affected in glaucoma and cause detrimental changes to the ONH. LC cells respond to mechanical strain by increasing the profibrotic cytokine transforming growth factor-beta 2 (TGFß2) and ECM proteins. Moreover, microRNAs (miRNAs or miR) regulate ECM gene expression in different fibrotic diseases, including glaucoma. A delicate homeostatic balance between profibrotic and anti-fibrotic miRNAs may contribute to the remodeling of ONH. This study aimed to determine whether modulation of miRNAs alters the expression of ECM in human LC cells. Primary human normal and glaucoma LC cells were grown to confluency and treated with or without TGFß2 for 24 h. Differences in expression of miRNAs were analyzed using miRNA qPCR arrays. miRNA PCR arrays showed that the miR-29 family was significantly decreased in glaucomatous LC cell strains compared to age-matched controls. TGFß2 treatment downregulated the expression of multiple miRNAs, including miR-29c-3p, compared to controls in LC cells. LC cells transfected with miR-29c-3p mimics or inhibitors modulated collagen expression.


Assuntos
Regulação da Expressão Gênica , Glaucoma/genética , MicroRNAs/genética , Disco Óptico/metabolismo , Doenças do Nervo Óptico/genética , Fator de Crescimento Transformador beta2/farmacologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Humanos , Disco Óptico/efeitos dos fármacos , Disco Óptico/patologia , Doenças do Nervo Óptico/tratamento farmacológico , Doenças do Nervo Óptico/patologia
7.
Invest Ophthalmol Vis Sci ; 62(6): 3, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938911

RESUMO

Purpose: In POAG, elevated IOP remains the major risk factor in irreversible vision loss. Increased TGFß2 expression in POAG aqueous humor and in the trabecular meshwork (TM) amplifies extracellular matrix (ECM) deposition and reduces ECM turnover in the TM, leading to a decreased aqueous humor (AH) outflow facility and increased IOP. Inhibitor of DNA binding proteins (ID1 and ID3) inhibit TGFß2-induced fibronectin and PAI-1 production in TM cells. We examined the effects of ID1 and ID3 gene expression on TGFß2-induced ocular hypertension and decreased AH outflow facility in living mouse eyes. Methods: IOP and AH outflow facility changes were determined using a mouse model of Ad5-hTGFß2C226S/C288S-induced ocular hypertension. The physiological function of ID1 and ID3 genes were evaluated using Ad5 viral vectors to enhance or knockdown ID1/ID3 gene expression in the TM of BALB/cJ mice. IOP was measured in conscious mice using a Tonolab impact tonometer. AH outflow facilities were determined by constant flow infusion in live mice. Results: Over-expressing ID1 and ID3 significantly blocked TGFß2-induced ocular hypertension (P < 0.0001). Although AH outflow facility was significantly decreased in TGFß2-transduced eyes (P < 0.04), normal outflow facility was preserved in eyes injected concurrently with ID1 or ID3 along with TGFß2. Knockdown of ID1 or ID3 expression exacerbated TGFß2-induced ocular hypertension. Conclusions: Increased expression of ID1 and ID3 suppressed both TGFß2-elevated IOP and decreased AH outflow facility. ID1 and/or ID3 proteins thus may show promise as future candidates as IOP-lowering targets in POAG.


Assuntos
Humor Aquoso/fisiologia , Proteína 1 Inibidora de Diferenciação/fisiologia , Proteínas Inibidoras de Diferenciação/fisiologia , Pressão Intraocular/efeitos dos fármacos , Hipertensão Ocular/induzido quimicamente , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Adenoviridae/genética , Animais , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos BALB C , Hipertensão Ocular/metabolismo , Tonometria Ocular , Malha Trabecular/metabolismo
8.
Am J Pathol ; 191(6): 1020-1035, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705750

RESUMO

Glucocorticoid-induced glaucoma is a secondary open-angle glaucoma. About 40% of the general population may develop elevated intraocular pressure on prolonged glucocorticoid treatment secondary to damages in the trabecular meshwork (TM), a tissue that regulates intraocular pressure. Therefore, identifying the key molecules responsible for glucocorticoid-induced ocular hypertension is crucial. In this study, Dickkopf-related protein 1 (Dkk1), a canonical Wnt signaling inhibitor, was found to be elevated in the aqueous humor and TM of glaucoma patients. At the signaling level, Dkk1 enhanced glucocorticoid receptor (GR) signaling, whereas Dkk1 knockdown or Wnt signaling activators decreased GR signaling in human TM cells as indicated by luciferase assays. Similarly, activation of the GR signaling inhibited Wnt signaling. At the protein level, glucocorticoid-induced extracellular matrix was inhibited by Wnt activation using Wnt activators or Dkk1 knockdown in primary human TM cells. In contrast, inhibition of canonical Wnt signaling by ß-catenin knockdown increased glucocorticoid-induced extracellular matrix proteins. At the physiological level, adenovirus-mediated Wnt3a expression decreased glucocorticoid-induced ocular hypertension in mouse eyes. In summary, Wnt and GR signaling inhibit each other in the TM, and canonical Wnt signaling activators may prevent the adverse effect of glucocorticoids in the eye.


Assuntos
Glaucoma/metabolismo , Receptores de Glucocorticoides/metabolismo , Malha Trabecular/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Feminino , Glaucoma/induzido quimicamente , Glucocorticoides/efeitos adversos , Humanos , Imunossupressores/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
9.
Invest Ophthalmol Vis Sci ; 61(13): 4, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33137197

RESUMO

Purpose: The lamina cribrosa (LC) is a key site of damage in glaucomatous optic neuropathy. We previously found that glaucoma LC cells have an increased profibrotic gene expression, with mitochondrial dysfunction in the form of decreased mitochondrial membrane potential. Altered cell bioenergetics have recently been reported in organ fibrosis and in cancer. In this study, we carried out a systematic mitochondrial bioenergetic assessment and measured markers of alternative sources of cellular energy in normal and glaucoma LC cells. Methods: LC cells from three glaucoma donors and three age-matched normal controls were assessed using VICTOR X4 Perkin Elmer (Waltham, MA) plate reader with different phosphorescent and luminescent probes. adenosine triphosphate levels, oxygen consumption rate, and extracellular acidification were measured and normalized to total protein content. RNA and protein expression levels of MCT1, MCT4, MTFHD2, and GLS2 were quantified using real-time RT-PCR and Western blotting. Results: Glaucoma LC cells contain significantly less adenosine triphosphate (P < .05) when supplied with either glucose or galactose. They also showed significantly diminished oxygen consumption in both basal and maximal respiration with more lactic acid contribution in ECA. Both mRNA and protein expression levels of MCT1, MCT4, MTHFD2, and GLS2 were significantly increased in glaucoma LC cells. Conclusions: We demonstrate evidence of metabolic reprogramming (The Warburg effect) in glaucoma LC cells. Expression of markers of glycolysis, glutamine, and one carbon metabolism are elevated in glaucoma cells at both the mRNA and protein levels. A better understanding of bioenergetics in glaucoma may help in the development of new therapeutics.


Assuntos
Glaucoma de Ângulo Aberto/metabolismo , Glicólise/fisiologia , Doenças Mitocondriais/metabolismo , Disco Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Biomarcadores , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Glaucoma de Ângulo Aberto/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Doenças Mitocondriais/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Disco Óptico/patologia , Doenças do Nervo Óptico/patologia , Consumo de Oxigênio/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Simportadores/genética , Simportadores/metabolismo , Doadores de Tecidos
10.
Mol Neurodegener ; 15(1): 48, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854767

RESUMO

BACKGROUND: Glaucoma is a leading neurodegenerative disease affecting over 70 million individuals worldwide. Early pathological events of axonal degeneration and retinopathy in response to elevated intraocular pressure (IOP) are limited and not well-defined due to the lack of appropriate animal models that faithfully replicate all the phenotypes of primary open angle glaucoma (POAG), the most common form of glaucoma. Glucocorticoid (GC)-induced ocular hypertension (OHT) and its associated iatrogenic open-angle glaucoma share many features with POAG. Here, we characterized a novel mouse model of GC-induced OHT for glaucomatous neurodegeneration and further explored early pathological events of axonal degeneration in response to elevated IOP. METHODS: C57BL/6 J mice were periocularly injected with either vehicle or the potent GC, dexamethasone 21-acetate (Dex) once a week for 10 weeks. Glaucoma phenotypes including IOP, outflow facility, structural and functional loss of retinal ganglion cells (RGCs), optic nerve (ON) degeneration, gliosis, and anterograde axonal transport deficits were examined at various stages of OHT. RESULTS: Prolonged treatment with Dex leads to glaucoma in mice similar to POAG patients including IOP elevation due to reduced outflow facility and dysfunction of trabecular meshwork, progressive ON degeneration and structural and functional loss of RGCs. Lowering of IOP rescued Dex-induced ON degeneration and RGC loss, suggesting that glaucomatous neurodegeneration is IOP dependent. Also, Dex-induced neurodegeneration was associated with activation of astrocytes, axonal transport deficits, ON demyelination, mitochondrial accumulation and immune cell infiltration in the optic nerve head (ONH) region. Our studies further show that ON degeneration precedes structural and functional loss of RGCs in Dex-treated mice. Axonal damage and transport deficits initiate at the ONH and progress toward the distal end of ON and target regions in the brain (i.e. superior colliculus). Most of anterograde transport was preserved during initial stages of axonal degeneration (30% loss) and complete transport deficits were only observed at the ONH during later stages of severe axonal degeneration (50% loss). CONCLUSIONS: These findings indicate that ON degeneration and transport deficits at the ONH precede RGC structural and functional loss and provide a new potential therapeutic window for rescuing neuronal loss and restoring health of damaged axons in glaucoma.


Assuntos
Transporte Axonal/fisiologia , Glaucoma/patologia , Degeneração Neural/patologia , Disco Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
11.
Exp Eye Res ; 197: 108103, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522476

RESUMO

The lamina cribrosa is the initial site of glaucomatous injury. Pathological changes to the lamina cribrosa include posterior displacement of the lamina cribrosa, loss of trophic support, and remodeling of the extracellular matrix. Optic nerve head (ONH) astrocytes and lamina cribrosa cells synthesize extracellular matrix proteins to support and maintain the lamina cribrosa under physiological conditions. During glaucoma, these cells respond to mechanical strain and other stimuli, which leads to pathological remodeling of the ONH. Although ONH astrocytes and lamina cribrosa cells have been previously cultured, there is no well-accepted, straightforward technique to isolate both cell types from a single dissected human ONH. To better understand the pathophysiology of glaucoma, we obtained and cultured lamina cribrosa explants from human donor eyes. Initially, cells that grew out from the explant were ONH astrocytes and lamina cribrosa cells. Using a specialized medium, we isolated pure populations of lamina cribrosa cells and ONH astrocytes. ONH astrocytes expressed glial fibrillary acidic protein (GFAP). Lamina cribrosa cells expressed alpha-smooth muscle actin (α-SMA), but were negative for GFAP. This method of ONH cell isolation and cell-culture will provide a technique to better understand the molecular and cell-specific changes in glaucomatous damage to the ONH.


Assuntos
Astrócitos/citologia , Proteínas da Matriz Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Disco Óptico/citologia , Astrócitos/metabolismo , Western Blotting , Células Cultivadas , Humanos , Disco Óptico/metabolismo
12.
Tex Public Health J ; 72(2): 19-21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377644

RESUMO

The Hispanic population is underserved and underrepresented in health care. Epidemiological studies are cmcial for providing insight to identify disparities and unmet eye health needs in this vulnerable group. The purpose of our study is to examine the prevalence of ocular conditions in the elderly Hispanic population in North Texas and identify the frequency in which these conditions were undiagnosed. This study was ancillary to the Health and Aging Brain study among Latino Elders (HABLE). Seventy-three HABLE participants (aged > 50 years) underwent neuropsychological evaluation and an eye health screening at the University of North Texas Health Science Center study site. Descriptive analyses were performed for prevalence of ocular conditions, as well as a comparison of self-reported conditions and ocular Endings. Our results suggest the prevalence patterns for undetected ocular disease in the Hispanic population of North Texas are comparable with the epidemiological trends for this population group in other concentrated areas in the United States.

13.
Prog Retin Eye Res ; 75: 100799, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31557521

RESUMO

Glaucoma is one of the leading causes of vision impairment worldwide. In order to further understand the molecular pathobiology of this disease and to develop better therapies, clinically relevant animal models are necessary. In recent years, both the rat and mouse have become popular models in glaucoma research. Key reasons are: many important biological similarities shared among rodent eyes and the human eye; development of improved methods to induce glaucoma and to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent models address the most important risk factor of elevated IOP, whereas the pressure-independent models assess "normal tension" glaucoma and other "non-IOP" related factors associated with glaucomatous damage. The current article provides descriptions of these models, their characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and limitations.


Assuntos
Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Glaucoma/diagnóstico
14.
Expert Rev Ophthalmol ; 15(3): 145-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38274668

RESUMO

Introduction: Glucocorticoids (GCs) have unique actions in their combined anti-inflammatory and immunosuppressive activities and are among the most commonly-prescribed drugs, particularly for inflammatory conditions. They are often used clinically to treat inflammatory eye diseases like uveitis, optic neuritis, conjunctivitis, keratitis and others, but are often accompanied by side effects, like ocular hypertension that can be vision threatening. Areas covered: The review will focus on the complex molecular mechanism of action of GCs that involve both transactivation and transrepression and their use therapeutically that can cause significant systemic side effects, particularly ocular hypertension that can lead to glaucoma. Expert Opinion: While we are still unclear as to all the mechanisms responsible for GC-induced ocular hypertension, however, there are potential novel therapies that are in development that can separate some of the anti-inflammatory therapeutic efficacy from their ocular hypertension side effect. This review provides some insight into these approaches.

15.
Invest Ophthalmol Vis Sci ; 60(6): 1967-1978, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050723

RESUMO

Purpose: Glucocorticoid (GC)-induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods: GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results: GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and α-smooth muscle actin (α-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions: We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.


Assuntos
Regulação da Expressão Gênica , Glaucoma/genética , Glucocorticoides/efeitos adversos , Hipertensão Ocular/genética , RNA/genética , Receptores de Glucocorticoides/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Imuno-Histoquímica , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/metabolismo , Receptores de Glucocorticoides/biossíntese , Ativação Transcricional
17.
Clin Anat ; 31(7): 1031-1049, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30117188

RESUMO

Glaucoma is a leading cause of irreversible vision loss and is associated with fibrotic changes in two ocular tissues-the optic nerve head (ONH) and trabecular meshwork (TM). We investigated the differences in extracellular matrix components (ECM) including collagen, elastin, transforming growth factor beta-2, type-II receptor (TGFßRII) and Galectin3 (Gal3) in the glaucomatous human eyes to quantify fibrotic changes in ONH and TM. Glaucomatous and control human donor eyes were prepared for chemical and immunological staining to quantify ECM protein expression in the TM and ONH. Chemical staining included: Trichrome (collagen), Vernhoeff-Van Giesen (elastin) and Sirius Red (collagen). Immunohistochemistry was used to determine levels of Gal3 and TGFß2RII. Quantitative analyses were performed using Image J software. Student's t-test was used to compare groups and Pearson's test was used to determine correlations P-values of 0.05 (or less) were considered statistically significant. Deposition of ECM proteins was elevated in glaucomatous tissues. There was increased collagen (P = 0.0469), Gal3 (P < 0.0001) and TGFß2RII (P = 0.0005) in the TM of glaucomatous eyes. Likewise, collagen (P = 0.0517) and Galectin3 (P = 0.041) were increased in the ONH glaucomatous eyes. There was a correlation of TGFßRII with Gal3 in the TM (P < 0.0001) and optic nerve (P = 0.0003). The TM and ONH of glaucomatous eyes showed increased expression of ECM proteins supporting a fibrotic pathology. Galectin3 and TGFß-2R II showed a positive correlation in TM and optic nerve supporting co-localization and suggesting their potential role in the glaucoma fibrotic process. Clin. Anat. 31:1031-1049, 2018. © 2018 The Authors. Clinical Anatomy published by Wiley Periodicals, Inc. on behalf of American Association of Clinical Anatomists.


Assuntos
Galectina 3/metabolismo , Glaucoma/metabolismo , Disco Óptico/metabolismo , Malha Trabecular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas , Estudos de Casos e Controles , Proteínas da Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Fibrose , Galectinas , Glaucoma/patologia , Humanos , Disco Óptico/patologia , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/metabolismo
18.
Exp Eye Res ; 176: 188-195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30006274

RESUMO

Optic nerve astrocytes play a major role in axonal degeneration and regeneration. Astrocyte lines are an important tool to elucidate the responsible cellular mechanisms. In this study, we established a conditionally immortalized mouse optic nerve astrocyte line. Astrocytes were cultured from explants derived from postnatal day 4-5 H-2kb-tsA58 transgenic mouse optic nerves. Cells were cultured in defined astrocyte culture medium under permissive (33 °C) or non-permissive (38.5 °C) temperatures with or without interferon-ɤ (IFN-ɤ). Astrocytes were characterized by immunocytochemistry staining using antibodies against glial fibrillary acidic protein (GFAP) and neural cell adhesion molecule (NCAM). Cell proliferation rates were determined by cell growth curves and percentage of Ki67 positive cells. Karyotyping was performed to validate the mouse origin of established cell line. Conditional immortalization was assessed by western blot-determined expression levels of SV40 large T antigen (TAg), p53, GFAP and NCAM in non-permissive culture conditions. In addition, phagocytic activity of immortalized cells was determined by flow cytometry-based pHrodo fluorescence analysis. After 5 days in culture, cells migrated out from optic nerve explants. Immunocytochemistry staining showed that migrating cells expressed astrocyte makers, GFAP and NCAM. In permissive conditions, astrocytes had increased expression levels of TAg and p53, exhibited a greater cell proliferation rate as well as a higher percentage of Ki67 positive cells (n = 3, p < 0.05) compared to cells cultured in non-permissive conditions. One cell line (ImB1ON) was further maintained through 60 generations. Karyotyping showed that ImB1ON was of mouse origin. Flow cytometry-based pHrodo fluorescence analysis demonstrated phagocytic activity of ImB1ON cells. Quantitative PCR showed mRNA expression of trophic factors. Non-permissive culture conditions decreased expression of TAg and p53 in ImB1ON, and increased the expression of NCAM. A conditionally immortalized mouse optic nerve astrocyte line was established. This cell line provides an important tool to study astrocyte biological processes.


Assuntos
Astrócitos/citologia , Nervo Óptico/citologia , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Astrócitos/metabolismo , Western Blotting , Antígeno CD56/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células/fisiologia , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Cariotipagem , Camundongos , Camundongos Transgênicos , Nervo Óptico/metabolismo , Fagocitose , Proteína Supressora de Tumor p53/metabolismo
19.
Invest Ophthalmol Vis Sci ; 59(5): 2154-2166, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801150

RESUMO

Purpose: The trabecular meshwork (TM) has an important role in the regulation of aqueous humor outflow and IOP. Regulation of the extracellular matrix (ECM) by TGFß2 has been studied extensively. Bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) has been shown to inhibit or modulate TGFß2 signaling. We investigate the role of TGFß2 and BAMBI in the regulation of TM ECM and ocular hypertension. Methods: Mouse TM (MTM) cells were isolated from B6;129S1-Bambitm1Jian/J flox mice, characterized for TGFß2 and dexamethasone (DEX)-induced expression of fibronectin, collagen-1, collagen-4, laminin, α-smooth muscle actin, cross-linked actin networks (CLANs) formation, and DEX-induced myocilin (MYOC) expression. MTM cells were transduced with Ad5.GFP to identify transduction efficiency. MTM cells and mouse eyes were transduced with Ad5.Null, Ad5.Cre, Ad5.TGFß2, or Ad5.TGFß2 + Ad5.Cre to evaluate the effect on ECM production, IOP, and outflow facility. Results: MTM cells express TM markers and respond to DEX and TGFß2. Ad5.GFP at 100 MOI had the highest transduction efficiency. Bambi knockdown by Ad5.Cre and Ad5.TGFß2 increased fibronectin, collagen-1, and collagen-4 in TM cells in culture and tissue. Ad5.Cre, Ad5.TGFß2, and Ad5.TGFß2 + Ad5.Cre each significantly induced ocular hypertension and lowered aqueous humor outflow facility in transduced eyes. Conclusions: We show for the first time to our knowledge that knockdown of Bambi alters ECM expression in cultured cells and mouse TM, reduces outflow facility, and causes ocular hypertension. These data provide a novel insight into the development of glaucomatous TM damage and identify BAMBI as an important regulator of TM ECM and ocular hypertension.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/fisiologia , Hipertensão Ocular/metabolismo , Malha Trabecular/metabolismo , Adenoviridae/genética , Animais , Células Cultivadas , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Pressão Intraocular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transfecção , Fator de Crescimento Transformador beta2/farmacologia
20.
Invest Ophthalmol Vis Sci ; 59(3): 1454-1466, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625468

RESUMO

Purpose: Wnt/ß-catenin signaling in the trabecular meshwork (TM) is required for maintaining normal intraocular pressure (IOP), although the mechanism(s) behind this are unknown. We hypothesize that Wnt/ß-catenin signaling regulates IOP via ß-catenin's effects on cadherin junctions. Methods: Nonglaucomatous primary human TM (NTM) cells were treated with or without 100 ng/ml Wnt3a, 1 µg/ml sFRP1, or both for 4 to 48 hours. Cells were immunostained for ß-catenin, total cadherins, or cadherin isoforms. Membrane proteins or whole-cell lysates were isolated for Western immunoblotting and probed for cadherin isoforms. RNA was extracted for cDNA synthesis and qPCR analysis of cadherin expression. Some NTM cells were cultured on electric plates for cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin, and/or sFRP1 were injected into eyes of 4- to 6-month-old female BALB/cJ mice (n = 8-10). Conscious IOPs were assessed for 35 days. Results: Upon Wnt3a treatment, total cadherin expression increased and ß-catenin accumulated at the TM cell membrane and on processes formed between TM cells. qPCR showed that Wnt3a significantly increased K-cadherin expression in NTM cells (P < 0.01, n = 3), and Western immunoblotting showed that Wnt3a increased K-cadherin in NTM cells, which was inhibited by the addition of sFRP1. Cell impedance assays showed that Wnt3a treatment increased transcellular resistance and anti-K-cadherin siRNA decreased transcellular resistance (P < 0.001, n = 4-6). Our in vivo study showed that K-cadherin significantly decreased sFRP1-induced ocular hypertension (P < 0.05, n = 6). Western immunoblotting also showed that K-cadherin alleviated sFRP1-induced ß-catenin decrease in mouse anterior segments. Conclusions: Our results suggest that cadherins play important roles in the regulation of TM homeostasis and IOP via the Wnt/ß-catenin pathway.


Assuntos
Caderinas/fisiologia , Pressão Intraocular/fisiologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/farmacologia , beta Catenina/fisiologia , Animais , Western Blotting , Caderinas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...